
API Reference

Cook Book

ENF0000CB001

Version:2.00

16 May, 2012

General
TERMS OF USE OF NEW MATERIALS - PLEASE READ CAREFULLY

From time to time, Enfora, in its sole discretion, may make available for download on its website
(www.enfora.com), or may transmit via mail or email, updates or upgrades to, or new releases of, the
firmware, software or documentation for its products (collectively, 'New Materials'). Use of such New
Materials is subject to the terms and conditions set forth below, and may be subject to additional terms
and conditions as set forth in Enfora's Technical Support Policy (posted on its website) and/or any written
agreement between the user and Enfora.

All New Materials are provided AS IS. Enfora makes no warranty or representation with respect to the
merchantability, suitability, functionality, accuracy or completeness of any such New Materials. The user of
such New Materials assumes all risk (known or unknown) of such use. Enfora reserves all rights in such
New Materials. The user shall have only a revocable and limited license to use such New Materials in
connection with the products for which they are intended. Distribution or modification of any New
Materials without Enfora's consent is strictly prohibited.

IN NO EVENT WILL ENFORA BE RESPONSIBLE FOR ANY INCIDENTAL, INDIRECT, CONSEQUENTIAL OR
SPECIAL DAMAGES AS A RESULT OF THE USE OF ANY NEW MATERIALS. ENFORA'S MAXIMUM LIABILITY
FOR ANY CLAIM BASED ON THE NEW MATERIALS SHALL NOT EXCEED FIFTY U.S. DOLLARS ($50).

- ii -

Copyright
© 2012 Enfora, Inc. All rights reserved. Complying with all applicable copyright laws is the responsibility of
the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means (electronic,
mechanical, photocopying, recording or otherwise), or for any purpose, without the express written
permission of Enfora, Inc.

Enfora and the Enfora logo are either registered trademarks or trademarks of Enfora, Inc. in the United
States.

251 Renner Pkwy

Richardson, TX 75080 USA

Phone: (972) 633-4400

Fax: (972) 633-4444

Email: info@enfora.com

www.enfora.com

- iii -

http://www.enfora.com/

Table of Contents

1 Introduction 1

1.1 Overview 1

1.2 References 1

2 Modem Communication 2

2.1 Serial Communication 2

2.2 Over The Air Communication 3

3 AT Commands Over DUN or OTA 4

3.0.1 IP Header 6

3.1 UDP Header 7

3.2 TCP Header 7

3.3 API Header 8

3.3.1 Wakeup Messages 10

3.3.2 Send Password to Modem 11

3.3.3 Read/Write AT Command Request 12

3.3.4 Unsolicited Messages 13

3.3.5 ACK Messages 14

3.3.6 ERROR Messages 15

3.3.7 API Optional Header 15

3.3.8 FOTA Complete Message 22

4 Terms Explained 24

4.1 Big Endian 24

4.2 Byte 24

4.3 Little Endian 24

5 Example 25

5.1 Sending AT Command: 25

5.2 Response from modem to host: 26

- iv -

5.3 Receiving UDP ASCII Event Data with Option Header MDMID and Sequence Number Enabled 27

- v -

1 Introduction

1.1 Overview
This document provides a description of the Application Program Interface (API) for the Enfora’s modems.

With this API, programmers can access information and control modem functions in real-time. A wide
range of information is available via the API and includes modem management and status functions. This
environment would best be utilized where a customized software application is being considered and real-
time performance parameters are mandatory. A good example of the necessity for the API is in a real-time
monitoring application that includes a status window to report performance and indicate when network
conditions begin to degrade. Data is consistently being updated during the established session.

Many host computers, which use this API, will contain a TCP/IP stack, which includes UDP and Point-to-
Point Protocol (PPP). However, this is not a requirement. This API includes documentation and details to
create your own UDP and PPP formatting for a minimal implementation.

This document contains proprietary information and must not be reproduced without the prior written
consent of Enfora, Inc. (Enfora).

1.2 References
1. Modem specific AT Command Set
2. GSM 07.05: “Digital cellular telecommunications systems (Phase 2+); Use of Data Terminal Equip-

ment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS)
and Cell Broadcast Service (CBS)”.

3. GSM 07.07: “Digital cellular telecommunications systems (Phase 2+); AT command set for GSM
Mobile Equipment (ME)”.

4. ITU-T Draft new Recommendation V.25ter: “Serial asynchronous automatic dialing and control”.

- 1 -

2 Modem Communication
Most AT commands may be read and/or written via UDP/IP or TCP/IP. The implemented AT command set
is a compliant subset of GSM Ref. 07.07, GSM Ref. 07.05, and ITU-T Ref. V.25ter.

The AT command state is entered upon power-up/reset. The modem always starts in AT command mode.
Use Windows HyperTerminal or similar application to send AT commands to the modem. Connect directly
to the COM port used by the modem.

If real-time status/control is not required, the AT Command set may offer an easier integration alternative.
Refer to AT Command Set Reference document (Enfora Document GSM0107PB001MAN) for a list of AT
commands.

The user may choose to use AT Commands to configure the modem and/or start GSM/GPRS registration
before switching to the UDP/IP or TCP/IP messaging for real-time status during data transfers.

A user can communicate with the modem via one of the two possible methods:

l RS232 Serial communication
l Over The Air (OTA) via SMS or GPRS

2.1 Serial Communication
Modem’s default serial communication is set at 115200 baud, no parity, 8 data bits, 1 stop bit, and
hardware flow control enabled. A user can send/receive AT commands, data, or response to/from the
modem via one of the two methods:

l Straight serial communication via HyperTerminal or similar application
l Serial communication via Dial-Up Network (DUN)

Straight serial communication provides the user with the following capabilities:

l Send AT commands and receive response
l Receive SMS notification
l Make a voice, data or fax call
l Receive any unsolicited message

Serial communication via DUN provides the user with the following capabilities:

- 2 -

l Send and receive UDP/IP and/or TCP/IP data
l Surf the internet (provided data service is provided by the service provider) via internet explorer or

similar application software
l Send AT commands via UDP/IP (described in section 4 of this document). The destination IP address

and port number for AT commands sent via UDP/IP can be configured via AT$UDPAPI command.
l Make a voice or fax call by sending AT commands via UDP/IP
l Receive SMS notification via UDP/IP
l Receive any unsolicited message via UDP/IP

2.2 Over The Air Communication
A user can send/receive AT commands to configure the modem OTA via UDP/IP or TCP/IP. Configuration
command request has to be sent at modem’s IP address and port number configured by AT$UDPAPI
command for UDP/IP or AT$TCPSRC command for TCP/IP. A user must make sure that they don’t send non-
configuration IP data at this port for the modem will ignore it. See section 7 for details on how AT
commands can be sent OTA.

- 3 -

3 AT Commands Over DUN Or OTA
Figure 1 describes the communication between a modem and a PC (or any RS232 compatible device) via a
Dial-Up Network (DUN) connection. To send and receive AT commands over UDP/IP, a user must create
the message first and then encapsulate it within a UDP/IP header. DUN connection must be established
before the message is sent to the modem. The modem will process the request and respond depending on
the type of request.

Figure: 1 - Communication Flow Chart

Please note that API communication using the TCP protocol is ONLY available over the air (OTA). The TCP
protocol is not operable over a PPP link. The UDP version of the API should be used for serial
communication.

- 4 -

Table 1 describes the details of an AT command sent to the modem via UDP/IP over a DUN session. All
messages are commanded from the host computer or remote host, and then responded to by the modem.
The modem may generate unsolicited UDP/IP messages if subscribed.

Table 2 describes the details of an AT command sent to the modem via TCP/IP over the air. All messages
are commanded from the remote host, and then responded to by the modem. The modem may generate
unsolicited TCP/IP messages if subscribed.

The data order for all fields is big endian (most significant byte first).

As described below, most of the fields within the UDP and IP headers will remain constant for all messages.
The fields that will have to be modified are: Length of IP Packet, Packet Number, IP header checksum,
Source IP, Destination IP, Source Port number, Destination port numbers, UDP packet length, and UDP
checksum

Bytes Bits 0 – 7 Bits 8 – 15 Bits 16 – 23 Bits 24 – 31 Header Information

0 – 3 Version length TypeOf Service Length of the IP Packet IP Header

4 – 7 Packet Number Fragmentation Offset

8 – 11 Time To Live Protocol IP header checksum

12– 15 Source IP

16 – 19 Destination IP

20 – 23 Source Port Number Destination Port Number UDP Header

24 – 27 Length of UDP Packet UDP Checksum

28– 31 API Number Command Type API OptionalHeader Size
(bytes)

API MessageHeader

32 thru (32+m) API OptionalHeader (m bytes)

(32+m) thru n Data/AT command Data

Table: 2 - ATI command sent via UDP/IP

Bytes Bits 0 – 7 Bits 8 – 15 Bits 16 – 23 Bits 24 – 31 Header Information

0 – 3 Version length TypeOf Service Length of the IP Packet IP Header

4 – 7 Packet Number Fragmentation Offset

8 – 11 Time To Live Protocol IP header checksum

12– 15 Source IP

16 – 19 Destination IP

- 5 -

20– 23 Source Port Number Destination Port Number TCP Header

24 – 27 SequenceNumber

28 – 31 AcknowledgeNumber

32– 35 Data Offset + Control Bits Window

36– 39 TCP header checksum Urgent Pointer

40– 43 Data Length* API Number API MessageHeader
/Data44– 47 Command Type API OptionalHeader Size

(bytes)
API OptionalHeader (m bytes) or Data/AT command

48 thru (46+m) API OptionalHeader or Data/AT command (cont)

(46+m) thru n Data/AT command Data

* Only used for API commands sent via TCP/IP

Table: 3 - ATI command sent via TCP/IP

3.0.1 IP Header

The Internet Protocol (IP) header consists of 20 bytes. The definition and minimal implementation consists
of the following (see RFC 791 for further details):

Bytes Bits 0 – 7 Bits 8 – 15 Bits 16 – 23 Bits 24 – 31

0– 3 Version length TypeOf Service Length of the IP Packet

4 – 7 Packet Number Fragmentation Offset

8 – 11 Time To Live Protocol IP header checksum

12– 15 Source IP

16 – 19 Destination IP

Table: 4 - IP Header (RFC 791)

Byte 0 8-bit bit field for version and length. This API only supports version 4 with IP header length of 5*4=20 bytes.
This field must be set to 0x45.

Byte 1 8-bit type of service. The API ignores this field. This field must be set to 0x00.

Bytes 2 - 3 16-bit total length of packet. This field must be changed for each API message. It includes the message data,
IP header, and UDP header. This field equals data Length + 28 (size of UDP and IP headers).

Bytes 4 - 5 16-bit identification. This field may be incremented for each packet. It is not required and may be left
0x0000.

Bytes 6 - 7: 16-bit Fragmentation offset. The API ignores this field. This field must be set to 0x0000.

Bytes 8 8-bit Time to live. The API ignores this field. This field must be set to 0x00.

Bytes 9 8-bit Protocol. The API only supports UDP. This field must be set to 17 (0x11).

Bytes 10 - 11 16-bit IP header checksum.

Bytes 12 - 15 32-bit source IP address. For messages from the host to the modem, this is the IP address of host’s UDP port.

- 6 -

This IP address may be any valid IP address desired by the user’s application, but will need to match the host’s
TCP/IP stack. This IP address will be used as the destination IP address for all response messages from the
modem.

Bytes 16 - 19 32-bit destination IP address. For messages from the host to the modem, this is the IP address of modem’s
UDP API port. This IP address may be configured using AT commands if desired. This IP address will be used
as the source IP address for all response messages from the modem. The default IP address for the modem’s
UDP API is 199.245.180.13. Unless changed via AT commands, byte 16 will be 199 (0xC7), byte 17 will be
245 (0xF5), byte 18 will be 180 (0xB4), and byte 19 will be 13 (0x0D).

3.1 UDP Header
The User Datagram Protocol (UDP) header consists of 8 bytes. The definition and minimal implementation
consists of the following (see RFC 768 for further details):

Bytes Bits 0 – 7 Bits 8 – 15 Bits 16 – 23 Bits 24 – 31

0– 3 Source Port Number Destination Port Number

4 – 7 Length of UDP Packet UDP Checksum

Table: 5 - UDP Header (RFC 768)

Bytes 0 - 1 16-bit source port number. For messages from the host to the modem, this is the source port number of the
host’s UDP port. This port may be any number desired by the user’s application. This number will be used as
the destination port for all response messages from the modem.

Bytes 2 - 3 16-bit destination port number. For messages from the host to the modem, this is the port number of the
modem’s UDP API port. The modem’s UDP API port number may be changed using AT commands (AT$U-
DPAPI) if desired. The modem’s default UDP API port number is 1720 (0x06B8).

Bytes 4 - 5 16-bit length of UDP packet. This is the data length only; it does not include the IP header length. This length
must be filled in for each message depending upon the amount of data in the packet.

Bytes 6 - 7 16-bit UDP checksum. This checksum may be used to validate the UDP packet. If the value is 0, then the
checksum is ignored.

3.2 TCP Header
The Transmission Control Protocol (TCP) header consists of 20 bytes. The definition and minimal
implementation consists of the following (see RFC 793 for further details):

Bytes Bits 0 – 7 Bits 8 – 15 Bits 16 – 23 Bits 24 – 31

0– 3 Source Port Destination Port

4 – 7 SequenceNumber

- 7 -

8– 11 Acknowledgement Number

12 – 15 Data Offset Reserved URG ACK PSH RST SYN FIN Window

16– 19 Checksum Urgent Pointer

Table: 6 - TCP Header (RFC 793)

Bytes 0 - 1 16-bit source port number

Bytes 2 - 3 16-bit destination port number. For messages from the host to the modem, this is the port number of the
modem’s TCP API port. The modem’s TCP API port number may be changed using AT commands
(AT$TCPSRC) if desired. The modem’s default TCP API port number is 1024 (0x0400).

Bytes 4 - 7 32-bit sequence number of the first data octet in this segment

Bytes 8 - 11 32-bit acknowledge number

Bytes 12 - 15 4 – bits: Data Offset, number of 32 bit words in the TCP header indicating where data begins

6 – bits: Reserved.

URG: Urgent Pointer field significant

ACK: Acknowledgment field significant

PSH: Push function

RST: Reset the connection

SYN: Synchronize sequence numbers

FIN: No more data from sender

16 bits: Number of data octets beginning with the one indicated in the acknowledgement field, which the
sender of this segment is willing to accept

Bytes 16 - 17 16-bit checksum

Bytes 18 - 19 Urgent Pointer

3.3 API Header
Configuration commands/messages can be sent to the modem either OTA or when a DUN connection is
present. Commands sent over a DUN connection can only be sent via UDP/IP. However, commands sent
OTA can be sent via UDP/IP or TCP/IP. Table 1 describes a high level overview for data sent over UDP/IP
while table 2 describes a high level overview for data sent over TCP/IP. The API commands provide easy
integration and message parsing for the embedded developer and application developer. The Registration
of Unsolicited message registers the requestor’s IP address and Port number and sends unsolicited
messages to the requestor’s IP address and Port number.

- 8 -

The base API message header is 4 bytes long for commands sent via UDP/IP or 6 bytes long for commands
sent via TCP/IP. The API message header, for both UDP/IP and TCP/IP, can be extended up to an additional
255 bytes by the inclusion of an API Optional Header. The Supported API number and commands are
described in table 5 below. The definition and minimal implementation consists of the following:

Messages sent via UDP/IP has the following API header

Bytes 0 - 1 16–bit API number

Bytes 2 8–bit Command Type information. This value determines the type of message being sent or
received by the host

Bytes 3 API Optional Header Size. This field defines the size of the API Optional Header in Bytes. This
field is set to zero (0) if an API Optional Header is not included.

Bytes 4 thru (4+m) API Optional Header.

Messages sent via TCP/IP has the following API header

Bytes 0 - 1: 16–bit Data length (data length should include the 6byte of API header as part of its length – ex: 00 1a in below given example)

Bytes 2 - 3 16–bit API number (ex: 00 0a in below given example)

Bytes 4 8–bit Command Type information. This value determines the type ofmessage being sent or received by the host (ex: 08 in below given exam-
ple)

Bytes 5 API OptionalHeader Size. This field defines the size of the API OptionalHeader in Bytes. This field is set to zero (0) if an API OptionalHeader is
not included.(ex: 00 in below given example)

Bytes 6 thru
(6+m)

API OptionalHeader

Example 26 byte TCP connect ID message:

00 1a 00 0a 08 00 31 32 33 34 35 36 37 38 39 30 |.'....1234567890|

31 32 33 34 35 36 37 38 39 30 |1234567890 |

API number (values given below are decimal) Command Type API OptionalHeader Size

Byte – 0 Byte – 1 Byte – 2 Byte – 3 Direction

0 – 4Reserved
5 –GPS Binary Read*
6– 65535Reserved

0 (Read Request) 0 Modem <-OTA

0–Unsolicited Msg Request
1 – 9Reserved
10–ACK
11– Password
12 – 65535Reserved

1 (Write Request) 0 Modem <-OTA

0–Unsolicited Msg
1 – 3Reserved
4 –ASCII Event Data (Param2>=256)*
5 – Binary Event Data*

2 (General Status Infor-
mation)

(Size of API Optional
Header)

Modem ->OTA

- 9 -

6– Reserved
7 –ASCII TAIP Data*
8 – $MSGSND Data
9 – Reserved
10–ASCII Event Data (Param2<256)
12 – Information Element Data

Echo first 2 bytes of an incoming data 3 (Error) (Size of API Optional
Header)

Modem ->OTA

0– 65535 4 (AT Command) 0 Modem <-OTA

Echo first 2 bytes of an incoming AT command
request

5 (AT Command Response) (Size of API Optional
Header)

Modem ->OTA

First 2 bytes of AT$UDPMSG command in ASCII
format

6 (Size of API Optional
Header)

Modem <-->OTA

First 2 bytes of AT$UDPMSG command in Binary
format

7 (Size of API Optional
Header)

Modem <-->OTA

10 8 0 Modem ID Modem ->OTA

Table: 7 - API Table

3.3.1 Wakeup Messages

The wakeup/keep-alive message is sent to the local host as a “Status” command type message. Following
data will be sent by the modem at the periodic interval configured by the AT$WAKEUP command:

Bytes Data Description Comments

0 0x00 Parameter Number

1 0x0A

2 0x02 Status

3 0x00 Reserved

4 0x20 Parameter Number (1)

- 10 -

5 0x20

6 0x20

7 0x20

8 0x20

9 0x20

10 0x20

11 0x20

12 0x20

13 0x31

14 0x20

15 0x20 Modem ID (12345678901234567890)

16 0x31

17 0x32

18 0x33

19 0x34

20 0x35

21 0x36

22 0x37

23 0x38

24 0x39

25 0x30

26 0x31

27 0x32

28 0x33

29 0x34

30 0x35

31 0x36

32 0x37

33 0x38

34 0x39

35 0x30

36 0x20

Table: 8 - Wakeup/keep alive message

3.3.2 Send Password To Modem

If APIPWD is set, the modem will require the correct password from a "friendly IP" (set by AT$FRIEND
command) before accepting any remote requests. Remote requests are only accepted from the last

- 11 -

"friendly IP" that sent the correct password. If APIPWD is null, then all remote requests, from any IP
address, will be accepted. The password is a maximum of 8 characters:

Table: 9 - Sending of password to the modem OTA

3.3.3 Read/Write AT Command Request

AT commands mentioned in the Enabler-IIG AT Command Set GSM0108PB001MAN document can be sent
to the modem when a DUN session is present or OTA. The host-to-modem message structure for
reading/writing an AT command is as follows:

Table: 10 - AT command to the modem

The modem will respond with the following message:

- 12 -

Table: 11 - AT command response

3.3.4 Unsolicited Messages

3.3.4.1 UDP API

A host has to register, with the modem, to receive any unsolicited messages. The modem saves the host’s
IP address and Port number. Unsolicited messages will then be sent to the IP and Port number that the user
sends its request from. The host should send the following message structure to register the reception of
unsolicited messages:

Table: 12 - Message structure for registration of unsolicited messages

The modem will send the following message structure for the registered unsolicited messages:

- 13 -

Figure: 13 - Message structure of an incoming unsolicited message

3.3.4.2 TCP API

The AT command $TCPURC is used to enable or disable the sending of URCs over TCP API.

AT$TCPURC= will enable URCs to be sent to the TCPAPI server

AT$TCPURC= will disable URCs to be sent to the TCPAPI server

The default is the sending of URCs is disabled.

The format of the URCs sent over TCP is shown in Table 12a.

Table: 14 - Message structure of URC over TCP

3.3.5 ACK Messages

To disable sending of a message that requires acknowledgement, the server should send the following
data, indicating an ACK, to stop sending of the messages.

NOTE: Acknowledge message should only be sent for messages configured to be sent via UDP/IP

- 14 -

Table: 15 - ACK message

3.3.6 ERROR Messages

If there is an error in processing an API request by the modem, the modem will respond with the following
message structure

Table: 16 - Error message

3.3.7 API Optional Header

The API Optional Header can be appended to the end of the UDPAPI or TCPAPI Header. It is comprised of a
sequence of Optional Header Fields as shown below.

Table: 17 - API Optional Header Format

Each Optional Header Field has the following generic format:

Byte 0: 8 bit field indicating the size of the Optional Header Field including Size and Type Fields

Byte 1: 8 bit field indicating the type of data contained in Data Field. Currently defined types are shown in
the table below.

Bytes 2+: Optional Header Data Field. The content is defined by the Optional Header Type

- 15 -

Currently there are eight defined Optional Header Types. The Complete list of defined types is as follows:

Table: 18 - Optional Header Type

The inclusion of the Optional Headers is selected by the AT$APIOPT and is only sent for applicable API
message types. The following table defines when the Optional Headers are applicable based on the API
Number and Command Types. For complete syntax of the AT$APIOPT Command, see GSM0308AT001 -
Enabler III AT Command Set.

- 16 -

Table: 19 - Conditions for Including Optional Fields into API Optional Header

- 17 -

A detailed description for each of the Optional Field types is discussed in the following paragraphs.

3.3.7.1 End Of Option Sequence – Type 0

This API Optional Header Field Type indicates it is the last of the Optional Header Fields. It is only used if
the API Optional Header Size is defined to be larger than the combined Option Header sizes. The size field
for this type shall include the remaining bytes of the API Optional Header. The Data Field shall contain all
zeros. The primary purpose of this type is to allow padding to re-align the Data contents of the API
Message to a word boundary. To accommodate single byte padding of the API Optional Header a size field
of one (1) shall be allowed as the last byte of the API Optional Header. If one (1) is seen in the size field it
shall be interpreted as the last byte of the API Optional Header with the Optional Header Field Type
assumed as End of Option Sequence. The End of Option Sequence formats are shown below:

Table: 20 - End of Optional Header Sequence Formats

3.3.7.2 MDMID – Type 1

The MDMID Optional Header Field allows servers to easily identify the source of the packet for easier
handling. The Optional Header Data Field would include the value set by the AT$MDMID command. No
additional padding will be added to the data. An example for a MDMID of ‘12345678901234567890’ is as
follows:

- 18 -

Table: 21 - MDMID Optional Header Field Format

3.3.7.3 Output Message Event Format- Type 2

The Output Message Event Format-Optional Header Field is available to messages generated by the event
engine. It contains the 32-bit <param2> value of the Output Message Event Format. The inclusion of this
option field is selected by the AT$APIOPT Command, see GSM0308AT001 - Enabler III AT Command Set.
The format for this optional header field is as follows:

Table: 22 - Output Message Event Format Header Field Format

- 19 -

3.3.7.4 Event Sequence Number – Type 3

The Event Sequence Number-Optional Header Field is available to messages generated by the event
engine. The optional data field would include the value of the Event Sequence Number. The Event
Sequence Number increments with each Output Event. The Event Sequence Number is not reset by power
off or the AT&F command. The inclusion of this option field is selected by the AT$APIOPT Command. When
the Event Sequence Number reaches it maximum value it will roll over to zero and restart counting. The
size of the Event Sequence Number can be set to 8, 16, 24, 32 bits by the AT$APIOPT Command, see
GSM0308AT001 - Enabler III AT Command Set. The Event Sequence Number Optional Header Field formats
are shown below for all available sizes:

Table: 23 - Example of Event Sequence Number Header - Seq Num = 0x12345678

3.3.7.5 Firmware Version - Type 4

The Firmware Version Optional Header Element is used to specify the Enfora Version Number of the
current firmware.

3.3.7.6 Cause Code – Type 5

The Cause Code Optional Header Element is used to specify a status code for an operation.

- 20 -

Bytes Data Description Comments

0 0x04 Size

1 0x05 Type = Cause Code

2 Cause CodeValue

3

Table: 24 - Cause Code Optional Header Element

Code Description

0 Unknown

1 Restart due to system initialization

2 Restart due to FOTA completion

Table: 25 - Cause Code Value Definitions

3.3.7.7 Output Event Number – Type 6

The Output Event Number Optional Header Element is used to specify an output event number.

Bytes Data Description Comments

0 0x03 Size

1 0x06 Type =Output Event Number

2 Output Event Number

Table: 26 - Output Event Number Optional Header Element

3.3.7.8 Hex Modem ID – Type 7

The Hex Modem ID Optional Header Element is used to add the hex modem ID to the optional header. The
size of the Modem ID can be 1 byte to 9 bytes based on the value in $MDMID. Leading zeros in the modem
ID are not transmitted – a modem ID of “0099” and “99” will be transmitted with the same value.

Description Size Type Data Data Data Data Data

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Hex modem ID 0x07 0x07 0xF1 0x36 0x6C 0xB0 0x7F

Table: 27 - Example of Modem ID Header - $MDMID:"001036000211071"

Description Size Type Data

Byte 0 Byte 1 Byte 2

Hex modem ID 0x03 0x07 0x63

Table: 28 - Example of Modem ID Header - $MDMID:"99"

- 21 -

Description Size Type Data

Byte 0 Byte 1 Byte 2

Hex modem ID 0x03 0x07 0x00

Table: 29 - Example of Modem ID Header - $MDMID:"999999999999999999A"

Description Size Type Data Data Data Data Data Data Data Data Data

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 8 Byte 9 Byte 10 Byte 10

Hex modem ID 0x0B 0x07 0x05 0x6B 0xC7 0x5E 0x2D 0x63 0x0F 0xFF 0xFF

Table: 30 - Example of Modem ID Header - $MDMID:"99999999999999999999"

3.3.7.9 Driver ID – Type 8

The Driver ID Optional Header Element is used to add the driver ID to the optional header. The entire 8
byte driver ID may be included, or the device may be configured to only report the least significant 4 bytes
of the serial number of the driver ID.

Description Size Type Data Data Data Data Data Data Data Data

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 8 Byte 9 Byte 10

4byteDriver ID 0x06 0x08 0x14 0xFD 0x42 0x5B - - - -

8 byteDriver ID 0x0A 0x08 0xB9 0x00 0x00 0x14 0xFD 0x42 0x5B 0x01

Table: 31 - Example of Driver ID Header - $IBTN: 1,b9,000014fd425b,01

3.3.8 FOTA Complete Message

The FOTA Complete Messsage is composed of the elements:

l Modem ID Header Element
l Cause Code Header Element
l Firmware Version Header Element

ModemID Size ModemID Type (1) Modem ID Data (Variable Length)

Cause Code Size (4) Cause Code Type (4) Cause CodeData (16bits) = 2 fpr FOTA Restart

FWVersion Size (6) Firmware Type (5) Firmware Version Data (32 bits)

Table: 32 - FOTA Complete Message

- 22 -

The FOTA process will send a FOTA Complete Message to the first destination in the FRIENDS list upon
completion of the FOTA operation. The FOTA operation is normally completed on the next Modem startup
following the new Firmware load. This message is composed the Cause Code indicating that a FOTA
operation caused the system to restart and the new Firmware Version.

- 23 -

4 Terms Explained

4.1 Big Endian
Big endian format means that the most significant byte is sent first. For example, a decimal value of
1234567 will be displayed as hex 0x0012D687. While sending this data over a communication link, the
most significant byte – 0x00 is sent first followed by 0x12, followed by the third byte 0xD6, followed by the
least significant byte 0x87.

1234567 (decimal) = 0x0012D687 (hex)

Byte-0 Byte-1 Byte-2 Byte-3

0x00 0x12 0xD6 0x87

4.2 Byte
In this document, One Byte = 8 bits. Bit-0 is the right most bit and is also referred to as pin-1 while Bit-7 is
the left most bit and is referred to as Pin-8.

Byte

Upper Nibble Lower Nibble

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0

Pin-8 Pin-7 Pin-6 Pin-5 Pin-4 Pin-3 Pin-2 Pin-1

27 26 25 24 23 22 21 20

4.3 Little Endian
Little endian format means that the least significant byte is sent first. For example, a decimal value of
1234567 will be displayed as hex 0x0012D687. While sending this data over a communication link, the
least significant byte – 0x87 is sent first followed by 0xD6, followed by the third byte 0x12, followed by the
most significant byte 0x00.

1234567 (decimal) = 0x0012D687 (hex)

Byte-0 Byte-1 Byte-2 Byte-3

0x87 0xD6 0x12 0x00

- 24 -

5 Example

5.1 Sending AT Command:
Note: IP and UDP checksum are not calculated in this example. They are left for the user to calculate as an
exercise.

Bytes Description Hex Value Notes

--

0 Version Length: 45

1 Type of Service: 00

2 & 3 Length of Packet: 00 23 IP + UDP Header + Message Data

4 & 5 Identification: 00 00

6 & 7 Fragmentation Offset: 00 00

8 Time to live: 00

9 Protocol: 11 UDP

10 & 11 IP Header Checksum: 00 00

12,13,14,15 Source IP: A6 85 AB 13 166.133.171.19

16,17,18,19 Destination IP: C7 F5 B4 0D 199.245.180.13

20 & 21 Source Port: 04 4C 1100

22 & 23 Destination Port: 06 B8 1720

24 & 25 Length of Packet: 00 04

26 & 27 UDP Checksum: 00 00

28 & 29 UPD API Command: 00 01 UDP API 00 01 'Sequence Number

30 UDP API Read: 04 AT Command Request = 04

31 UDP API Optional: No Optional Header

Header Size

32,33,34 AT Command 41 54 49 AT Command = ATI

- 25 -

5.2 Response From Modem To Host:

Bytes Description Hex Value Notes

--

0 Version Length: 45

1 Type of Service: 00

2 & 3 Length of Packet: 00 30 IP + UDP Header + Message Data

4 & 5 Identification: 00 00

6 & 7 Fragmentation Offset: 00 00

8 Time to live: 00

9 Protocol: 11 UDP

10 & 11 IP Header Checksum: 00 00

12,13,14,15 Source IP: A6 85 AB 13 166.133.171.19

16,17,18,19 Destination IP: C7 F5 B4 0D 199.245.180.13

20 & 21 Destination Port: 06 B8 1720

22 & 23 Source Port: 04 4C 1100

24 & 25 Length of Packet: 00 04

26 & 27 UDP Checksum: 00 00

28 & 29 UPD API Command: 00 01 UDP API 00 01 ‘Sequence Number

30 UDP API Status: 05 AT Command Response = 05

31 UDP API Optional: No Optional Header

Header Size

32,33,34,35 AT Command Response 0D 0A 45 6E Enfora, Inc.

36,37,38,39 Response continued 66 6F 72 61

40,41,42,43 Response continued 2C 20 49 6E

44,45,46,47 Response continued 63 2E 0D 0A

- 26 -

5.3 Receiving UDP ASCII Event Data With Option Header
MDMID And Sequence Number Enabled

Bytes Description Hex Value Notes

--

0 Version Length: 45

1 Type of Service: 00

2 & 3 Length of Packet: 00 32 IP + UDP Header + Message Data

4 & 5 Identification: 00 00

6 & 7 Fragmentation Offset: 00 00

8 Time to live: 00

9 Protocol: 11 UDP

10 & 11 IP Header Checksum: 00 00

12,13,14,15 Source IP: A6 85 AB 13 166.133.171.19

16,17,18,19 Destination IP: C7 F5 B4 0D 199.245.180.13

20 & 21 Destination Port: 06 B8 1720

22 & 23 Source Port: 04 4C 1100

24 & 25 Length of Packet: 00 04

26 & 27 UDP Checksum: 00 00

28 & 29 UPD API Number: 00 0A ASCII Event Data

30 UDP API Status: 02 General Status Info

31 UDP API Optional: 0B Combined Optional

Header Size Header Size

32 Optional Header Size: 07 Size of MDMID Optional Header

33 Optional Header Type: 01 Type is MDMID

34 thru 38 Optional Header Data: 31 32 33 34 35 MDMID – ‘12345’

- 27 -

39 Optional Header Size: 04 Size of Sequence Number Optional Header

40 Optional Header Type: 03 Type is Sequence Number

41 & 42 Optional Header Data: AB CD Event Sequence Number ‘ABCD’

43 thru 50 Output Message Event xx xx xx ...

- 28 -

	1 Introduction
	1.1 Overview
	1.2 References

	2 Modem Communication
	2.1 Serial Communication
	2.2 	Over The Air Communication

	3 AT Commands Over DUN or OTA
	3.0.1 	IP Header
	3.1 	UDP Header
	3.2 TCP Header
	3.3 API Header
	3.3.1 Wakeup Messages
	3.3.2 Send Password to Modem
	3.3.3 Read/Write AT Command Request
	3.3.4 Unsolicited Messages
	3.3.5 ACK Messages
	3.3.6 	ERROR Messages
	3.3.7 API Optional Header
	3.3.8 FOTA Complete Message

	4 Terms Explained
	4.1 Big Endian
	4.2 	Byte
	4.3 	Little Endian

	5 Example
	5.1 Sending AT Command:
	5.2 Response from modem to host:
	5.3 Receiving UDP ASCII Event Data with Option Header MDMID and Sequence Number Enabled

